

Carcase data: big value for informing genetics

Max Tweedie, B+LNZ Genetics

How do we evaluate animals for genetic merit?

Genetic Effects

- > All known information
- > DNA Parentage
- Heritability's
- Correlated traits

Fixed + Random Effects

- > Sex
- > Age
- > Herd
- Contemporary/management grouping
- Environment (Random)

(Simultaneously Estimate)

Unbiased Breeding values

estimate of an animals genetic merit as a parent compared to other animals

Questions

➤ Can we assess the average beef carcase through the works for carcase quality?

➤ Can we use the abattoir collected data from the 'average carcase' for genetics?

Why isn't this data genetically usable?

> Not able to estimate genetic and fixed effects fairly

CONTEMPORARY GROUPING

How can we get this data?

- Cull stud bulls and heifers
 - > Small numbers, low effectiveness
- Research stations
 - > Absent in NZ
- Commercial performance recorded herds
 - Progeny tests
 - Cost is spread (recording other traits)
 - ➤ Industry coverage

How are carcase traits measured?

- Chemically extracted carcase IMF%
 - ➤ Most accurate and objective measure of marbling
 - > Expense/some product damage
- Lab tests
 - > Shear Force
 - ➤ Cooking loss

How are carcase traits measured?

Abattoir Carcase Grading

- MSA and Aus-Meat, possibly EQ?
- Most effective data to collect across EQ traits
- Only way to get raw RBY + CW otherwise generated from trait correlations
- > NZ has never collected before

(Reverter et al. 2000)

How are carcase traits measured?

Ultrasound scanning

- Live animal at 400 days
- EMA, IMF, Rib and Rump fat measured
- Cheap & easy way to show differences
- Using live to estimate killed (correlation)
- Scoring data underpins

(Wilson, 1995)

TRAIT 1	TRAIT 2	GENETIC CORRELATION	COMMENT		
Ausmeat Marble score	MSA marble score	0.99	Very strong correlation, low standard error		
Carcase IMF %	Ausmeat Marble score	0.95	Very strong correlation, low std error		
Scan Marbling	Ausmeat Marble score	0.65	Moderate std error		
Scan rib, rump fat, EMA	MSA/Ausmeat	0.9	Very strong correlation, low std error		

^{*} Across breed carcase trait correlations

To remember...

 Scanning is still very useful (less so for marbling but absolutely essential)

 Abattoir data collection is the ultimate and underpins good selection

How else are carcase traits measured?

- Genomic marker testing
 - Predict using a gene test early
 - > Developing in value, progeny tests will enhance

Trait correlations

- Future objective possibilities
 - > Spectral imaging in abattoir
 - > RGBD cameras at 400 days

If we could collect this data, What is it worth?

- NZ has never submitted abattoir data
 - Gains in selection accuracy EBVs become a fairer estimate of their true value
 - Reduced confidence intervals (smaller EBV fluctuations at a given accuracy)
 - Carcase weight and dressing percentage key traits otherwise only recorded by trait correlation

If we could collect this data, What is it worth?

- Carcase traits are highly heritable
- Increased genetic gain (increased accuracy)

Meat market specifications (directly targeting)

Progress =

Balance

May 2015 Hereford GROUP BREEDPLAN																		
	Calving	Calving			200	400	600	Mat				Days		Eye			Retail	
1.1	Ease	Ease	Gestation	Birth	Day	Day	Day	Cow		Maternal	Scrotal	to	Carcase	Muscle	Rib	Rump	Beef	
Ш	DIR	DTRS	Length	Wt.	Wt	Wt	Wt	Wt	Milk	Value	Size	Calving	Wt	Area	Fat	Fat	Yield	IMF
	(%)	(%)	(days)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(cm)	(days)	(kg)	(sq cm)	(mm)	(mm)	(%)	(%)
EBV	-4.0	+1.4	-4.2	+3.8	+45	+72	+93	+58	+8	+15	+1.5	-4.2	+75	+5.1	+1.7	+2.8	+0.3	+1.8
Acc	87%	75%	97%	98%	97%	97%	96%	87%	86%	88%	96%	50%	85%	74%	77%	83%	75%	81%

With

Without

Lab Tests
(Objective IMF)

Carcase Grading

Genomics

Trait Correlations

> Ultrasound Scanning

How can we get this data?

- Cull stud bulls and heifers
 - > Small numbers, low effectiveness
- Research stations
 - Absent in NZ
- Commercial performance recorded herds
 - Progeny tests
 - Cost is spread
 - ➤ Industry coverage
 - > cheaper

Value in the market place

- Meat Standards Australia has shown us that genetics is a key way to influence carcase grading
- \$45 /head in SFF Beef EQ Reserve grade
- \$150 per head for 4% increase in yield
- Not about 1 individual trait

One trait worth noting:
 Marbling (on its own) is worth a 24 cent premium Australian markets

SFF BEEF EQ Grading Spec's	Breedplan Traits that Influence
Ultimate PH	Docility (trial)
Ossification	Carcase weight (kg), 400D (kg), 600D (kg)
Marbling	IMF (%), Rib fat (mm)
Rib Fat	Rib Fat (mm)
Eye Muscle Area	EMA (cm2)
Carcase weight	CW (kg)
Dressing %	RBY (%)
Fat Colour	
Meat Colour	Docility (trial)

CASE STUDY: TEAM TE MANIA

- 42 herds testing young sires- all DNA recorded and on Breedplan commercially
- All steers are feedlotted and abattoir carcase assessed
- Enormous pool of data feeds back to lift accuracy and deliver gain far faster than standard practice
- Premium for consistency hitting specs on top of premium!
- Value chain flow on effects

TAKE THIS HOME WITH YOU

- 1. Animals can be only be used for genetic evaluation if we know:
 - Age, parentage and contemporary grouping
- 2. Abattoir carcase data is the highest value carcase data
- Ultrasound scanning is good for showing genetics differences and is a very useful predictor
- 4. Abattoir grading is most easily completed in a progeny test where cost can also be spread
- 5. Cattle with the right genetic package (and management) will hit premium market spec's and deliver \$\$\$\$ to farmers

- Reverter, A., Johnston, D.J., Graser, H. U., Wolcott, M. L., & Upton, W. H. (2000). *Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle*. JOURNAL OF ANIMAL SCIENCE-MENASHA THEN ALBANY THEN CHAMPAIGN ILLINOIS-, 78(7), 1786-1795
- Parnell, P. F. (2004). *Industry application of marbling genetics: a brief review*. Animal Production Science, 44(7), 697-703.
- http://www.mla.com.au/mbfp/Meeting-market-specifications
- http://www.silverfernfarms.com/our-co-operative/our-process/understanding-eating-quality-system-grading

Thank you.

